Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Dynamic magnetic resonance imaging (MRI) is a popular medical imaging technique that generates image sequences of the flow of a contrast material inside tissues and organs. However, its application to imaging bolus movement through the esophagus has only been demonstrated in few feasibility studies and is relatively unexplored. In this work, we present a computational framework called mechanics-informed MRI (MRI-MECH) that enhances that capability, thereby increasing the applicability of dynamic MRI for diagnosing esophageal disorders. Pineapple juice was used as the swallowed contrast material for the dynamic MRI, and the MRI image sequence was used as input to the MRI-MECH. The MRI-MECH modeled the esophagus as a flexible one-dimensional tube, and the elastic tube walls followed a linear tube law. Flow through the esophagus was governed by one-dimensional mass and momentum conservation equations. These equations were solved using a physics-informed neural network. The physics-informed neural network minimized the difference between the measurements from the MRI and model predictions and ensured that the physics of the fluid flow problem was always followed. MRI-MECH calculated the fluid velocity and pressure during esophageal transit and estimated the mechanical health of the esophagus by calculating wall stiffness and active relaxation. Additionally, MRI-MECH predicted missing information about the lower esophageal sphincter during the emptying process, demonstrating its applicability to scenarios with missing data or poor image resolution. In addition to potentially improving clinical decisions based on quantitative estimates of the mechanical health of the esophagus, MRI-MECH can also be adapted for application to other medical imaging modalities to enhance their functionality.more » « less
-
Enhancing Chicago Classification diagnoses with functional lumen imaging probe—mechanics (FLIP‐MECH)Abstract BackgroundEsophageal motility disorders can be diagnosed by either high‐resolution manometry (HRM) or the functional lumen imaging probe (FLIP) but there is no systematic approach to synergize the measurements of these modalities or to improve the diagnostic metrics that have been developed to analyze them. This work aimed to devise a formal approach to bridge the gap between diagnoses inferred from HRM and FLIP measurements using deep learning and mechanics. MethodsThe “mechanical health” of the esophagus was analyzed in 740 subjects including a spectrum of motility disorder patients and normal subjects. The mechanical health was quantified through a set of parameters including wall stiffness, active relaxation, and contraction pattern. These parameters were used by a variational autoencoder to generate a parameter space called virtual disease landscape (VDL). Finally, probabilities were assigned to each point (subject) on the VDL through linear discriminant analysis (LDA), which in turn was used to compare with FLIP and HRM diagnoses. ResultsSubjects clustered into different regions of the VDL with their location relative to each other (and normal) defined by the type and severity of dysfunction. The two major categories that separated best on the VDL were subjects with normal esophagogastric junction (EGJ) opening and those with EGJ obstruction. Both HRM and FLIP diagnoses correlated well within these two groups. ConclusionMechanics‐based parameters effectively estimated esophageal health using FLIP measurements to position subjects in a 3‐D VDL that segregated subjects in good alignment with motility diagnoses gleaned from HRM and FLIP studies.more » « less
An official website of the United States government
